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Ex 3.1 (On sequences and boundedness in LCTVS)
Let X be a LCTVS with its topology being induced by a family of seminorms (pi)i∈I .

a) Show that a sequence (xn)n∈N ⊂ X converges to x ∈ X if and only if pi(xn − x) → 0 for
all i ∈ I.

A set E ⊂ X is called bounded if for every neighborhood U of 0 there exists s > 0 such that
E ⊂ sU .

b) Show that a set E ⊂ X is bounded if and only if pi(E) is a bounded subset of R for every
i ∈ I.

A sequence (xn)n∈N ⊂ X is called a Cauchy sequence if for every neighborhood U of 0 there
exists N ∈ N such that xm − xn ∈ U for all n,m ≥ N .

c) Show that Cauchy sequences are bounded.
Hint: If U is a neighborhood of the origin, due to the continuity of the addition and Ex. 1.3

there exists an absorbing, balanced neighborhood V of 0 such that V + V ⊂ U .

Solution 3.1 : a) Assume that xn → x. Since X is a topological vector space, the translation-
invariance of neighborhoods implies that xn − x → 0. Given i ∈ I we define the open set
Bε,i(0) = {y ∈ X : pi(y) < ε} which contains 0. Hence by the definition of convergence we
deduce that there exists N = N(i, ε) such that for all n ≥ N it holds that xn − x ∈ Bε,i(0), or
equivalently, pi(xn − x) < ε. This implies that pi(xn − x) → 0.

Now we suppose that pi(xn−x) → 0 for all i ∈ I. In particular, for all finite sets I0 ⊂ I and ε > 0
there exists N = N(I0, ε) such that for all n ≥ N we have maxi∈I0 pi(xn−x) < ε. In particular,
for all n ≥ N it holds that xn − x ∈ Bε,I0(0). Since the latter balls define a neighborhood basis
of the origin, it follows that xn − x → 0 and again by translational invariance xn → x.

b) Assume that E ⊂ X is bounded. Since the ball B1,i(0) is a neighborhood of 0, it follows that
there exists s > 0 such that E ⊂ sB1,i(0) = Bs,i(0). Hence pi(x) < s for all x ∈ E.

Next suppose that for every i ∈ I there exists ki > 0 such that |pi(x)| < ki for all x ∈ E. Let
U ⊂ X be a neighborhood of 0. Then there exists ε > 0 and I0 ⊂ I finite such that Bε,I0(0) ⊂ U .
Setting s = maxi∈I0 ki/ε > 0, it follows that for all x ∈ E and i ∈ I0,

pi(x) < ki ≤ sε

so that x ∈ Bsε,I0(0) = sBε,I0(0) ⊂ sU for all x ∈ E. Hence E is bounded.

c) Let U ⊂ X be a neighborhood of the origin. We use the hint to find a balanced, absorbing,
neighborhood V of 0 such that V + V ⊂ U . Since (xn)n∈N is a Cauchy sequence, there exists



N ∈ N such that for all n ≥ N it holds that xn−xN ∈ V . Since V is absorbing, we find sN > 0
such that xN ∈ sNV . Hence, for n ≥ N and t > max{1, sN} we find that

xn = (xn − xN) + xN ∈ V + sNV ⊂ max{1, sN}V +max{1, sN}V ⊂ tV + tV ⊂ tU,

where we used the fact that the set λV is balanced for every λ ∈ K, so that sV ⊂ tV for all
s < t. Finally, for x1, . . . , xN−1, the continuity of the scalar multiplication implies that there
exists R > 0 such that for all j = 1, . . . , N − 1 and t ≥ R it holds that xj ∈ tU . Hence for all
t ≥ max{1, sN , R} we have

{xn : n ∈ N} ⊂ tU

Note that we can also prove this without the hint using part (b). Indeed, since (xn)n∈N is Cauchy,
for any i ∈ I, ε > 0, there exists N > 0 such that for all n, m ≥ N we have xn−xm ∈ Bε,{i}(0),
i.e. pi(xn − xm) < ε. Then since for any semi-norm p we have

|p(x)− p(y)| ≤ p(x− y)

we deduce that for each i ∈ I the sequence (pi(xn))n∈N is Cauchy in R, and hence bounded.
Hence {xn : n ∈ N} is bounded by (b).

Ex 3.2 (On bounded and compact sets in TVS)
Let X be a TVS. Show that :

a) Every compact set K ⊂ X is bounded.

Hint: Every neighborhood of 0 contains an absorbing and balanced neighborhood of 0, see

Exercise 1.3 b)-c).

b) A set E ⊂ X is bounded if and only if every countable subset of E is bounded.

c) If E,F ⊂ X are bounded, so is E + F . If E,F ⊂ X are compact, so is E + F .

d)∗ If K ⊂ X is compact and C ⊂ X is closed then K +C is closed. Give an example of two
closed sets in a TVS such that their sum is not closed.

Hint: Prove first that if K is contained in an open set U then there is an open neighborhood

of 0 such that K + V ⊂ U .

Solution 3.2 :
a) Let K ⊂ X be compact and let U be a neighborhood of 0. We need to show that there is
s > 0 such that K ⊂ sU . To this end, choose an absorbing and balanced neighborhood V of 0
such that V ⊂ U (see Exercise 1.3, items b)-c)). Because V is absorbing, we have

K ⊂
∞⋃
n=1

nV = X.

Owing to the compactness of K, there is N ∈ N such that

K ⊂
N⋃

n=1

nV = N
( N⋃

n=1

n

N
V
)
⊂ N

( N⋃
n=1

V
)
= NV,

where the second inclusion holds since V is balanced. Because V is a subset of U , we getK ⊂ sU
with s = N .

b) Suppose for contradiction that E is not bounded but every countable subset is. Then there
exists a neighborhood U of 0 such that E ̸⊂ tU for any t > 0. Let V ⊂ U be a balanced
neighbourhood of the origin (which exists by Exercise 1.3). Then for any n ∈ N there exists



xn ∈ E\nV . The set {xn : n ∈ N} ⊂ E is countable so bounded, so there exists r > 0 such that
{xn : n ∈ N} ⊂ rV . Moreover, since V is balanced, for any r′ > r we have

rV = r′
( r

r′
V
)
⊂ r′V.

In particular, for any n > r, we have xn ∈ rV ⊂ nV which is a contradiction.
Conversely, if E is bounded, then for any countable subset {xn : n ∈ N} ⊂ E and any
neighbourhood U of the origin there exists s > 0 such that {xn : n ∈ N} ⊂ E ⊂ sU , so
{xn : n ∈ N} is bounded.

c) Assume that E,F ⊂ X are bounded. Let U be a neighborhood of 0 and take also a balanced
neighborhood V of 0 such that V +V ⊂ U . That we can alway find such V for a given U follows
from the continuity of the addition map (see the hint to the previous exercise).

By assumption, we can find sE, sF > 0 such that E ⊂ sEV and F ⊂ sFV . Put s := max{sE, sF}.
Then, using balancedness of V

E + F ⊂ sEV + sFV = s
(sE
s
V
)
+ s

(sF
s
V
)
⊂ sV + sV = s(V + V ) ⊂ sU.

Now, assume that E,F ⊂ X are both compact. If we denote by A : X ×X → X the addition
map in X (i.e., A(x, y) = x+ y), we have

E + F = A(E × F ).

By assumption, the set E×F is compact in the product topology of X ×X (please verify that
as a simple exercise in topology). Since A is continuous and E + F is the image through A of
a compact set, E + F is compact too.

d) First we show that, if K ⊂ X is compact and contained in an open set U , then there exists
an open neighborhood of 0 such that K + V ⊂ U . (sidenote : the set K + V is called the
V -neighborhood of K because it is open and obviously K ⊂ K + V .)

Let K and U be as above. Since U is open and K ⊂ U , for each x ∈ K there exists an
open neighborhood Vx of 0 such that x + Vx ⊂ U . Moreover, by continuity of addition, there
exists a neighborhood Wx of 0 such that Wx +Wx ⊂ Vx. Since K is compact, a finite number
x1 +Wx1 , . . . , xn +Wxn of these sets covers K. Let V =

⋂n
m=1Wxm .

To show that K + V ⊂ U , consider any x ∈ K. There must be some integer m for which
x ∈ xm +Wxm . Hence

x+ V ⊂ xm +Wxm + V ⊂ xm +Wxm +Wxm ⊂ xm + Vxm ⊂ U.

Therefore K + V ⊂ U .

Now we move to the main part of the exercise. Let K be compact, C closed and let x ∈ K + C.
Then, for all neighborhoods V of 0,

(x+ V ) ∩ (K + C) ̸= ∅ ⇐⇒ (−K + x+ V ) ∩ C ̸= ∅. (⋆)

To show that x ∈ K +C, first observe that if (−K + x)∩C = ∅ then the compact set −K + x
is contained in an open set X \C. By the first part, there exists an open neighborhood V of 0
such that (−K + x+ V ) ⊂ X \ C, which contradicts (⋆).



Finally, consider X = R with the usual Euclidean topology. The sets A = {n ∈ N : n ≥ 2}
and B = {−n − 1/n : n ≥ 2} are both closed, but the set A + B contains {−1/n : n ∈ N}
which has 0 as an accumulation point, so A+B is not closed.

Ex 3.3 (On the continuity of seminorms on LCTVS)
Let X be a locally convex topological vector space with seminorms (pi)i∈I generating the to-
pology. Consider another seminorm q : X → [0,+∞). Show that the following properties are
equivalent :

i) q is continuous.

ii) There exist c > 0 and I0 ⊂ I finite such that

q(x) ≤ c
∑
i∈I0

pi(x).

Solution 3.3 : i) =⇒ ii) : Assume that q is continuous. Then it is particularly continuous
in 0, so that there exists δ > 0 and I0 ⊂ I finite such that q(x) < 1 for all x ∈ Bδ,I0(0). In
particular, for any x ∈ X we distinguish the following two cases :

1) PI0(x) :=
∑

i∈I0 pi(x) = 0 : in this case, we have for all R > 0 that PI0(Rx) = RPI0(x) = 0,
so that in particular Rx ∈ Bδ,I0(0) and therefore Rq(x) = q(Rx) < 1 for all R > 0. This
implies q(x) = 0, so that q(x) ≤ cPI0(x) for all c > 0 ;

2) PI0(x) > 0 : Then y := δx/(2PI0(x)) satisfies y ∈ Bδ,I0(0), so that q(y) < 1, which yields

1 > q(y) =
δ

2PI0(x)
q(x),

which implies the claim with c = 2
δ
.

ii) =⇒ i) : We first show that q is continuous in 0. Denote by k the cardinality of I0. Then
for any ε > 0 it holds that

B ε
ck

,I0
(0) ⊂ q−1((−ε, ε)).

Hence by definition q is continuous in 0. Next we prove that q is continuous in an arbitrary point
x ∈ X. To this end, note that when V is a neighborhood of the origin such that q(V ) ⊂ (−ε, ε),
then x+ V is a neighborhood of x such that for any y ∈ x+ V it holds that

|q(y)− q(x)| ≤ q(y − x) < ε,

so that q is continuous in x. Hence q is continuous.

Ex 3.4 (On test functions on compact intervals∗)
Let [a, b], where a < b, be a compact interval in R. Consider the vector space

D[a,b] = {f ∈ C∞(R) : supp(f) ⊆ [a, b]},

where C∞(R) is the space of all smooth functions on R and supp(f) is the support of f
(namely, the complement of the largest open set on which f vanishes).

a) Show that the function

ϕ(x) =

{
e−1/t for t > 0
0 for t ≤ 0

belongs to C∞(R). As a consequence, notice that f(x) = ϕ(x− a)ϕ(b− x) is in D[a,b].



b) Consider the family of seminorms

pn(f) = max
{∣∣f (k)(x)

∣∣ : x ∈ R, k ≤ n
}
, f ∈ D[a,b], n = 0, 1, . . . ,

where f (k) stands for the k-th derivative of f . Show that this family introduces a locally
convex topology on D[a,b]. What is the neighborhood basis of 0 in this topology. What
does it mean that a sequence {fn} ⊂ D[a,b] converges to f ∈ D[a,b] ? Is this topology
metrizable/normable ?

c) Let E ⊂ D[a,b] be closed and bounded in the topology from b). Show that for every
k = 0, 1, . . . , the set {f (k) : f ∈ E} is a precompact subset of C([a, b]) (the space of
continuous functions on [a, b] with max norm). Using this fact, demonstrate that E is
compact in D[a,b].

Hint: For the first part use Arzelà–Ascoli theorem, for the second Cantor’s diagonal argument.

(Let us know if you are not familiar with these tools)


